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Abstract

Weakly supervised multi-label classification (WSML)
task, which is to learn a multi-label classification using par-
tially observed labels per image, is becoming increasingly
important due to its huge annotation cost. In this work, we
first regard unobserved labels as negative labels, casting
the WSML task into noisy multi-label classification. From
this point of view, we empirically observe that memoriza-
tion effect, which was first discovered in a noisy multi-class
setting, alse occurs in a multi-label setting. That is, the
model first learns the representation of clean labels, and
then starts memorizing noisy labels. Based on this finding,
we propose novel methods for WSML which reject or cor-
rect the large loss samples to prevent model from memo-
rizing the noisy label. Without heavy and complex compo-
nents, our proposed methods outperform previous state-of-
the-art WSML methods on several partial label settings in-
cluding Pascal VOC 2012, MS COCO, NUSWIDE, CUB,
and Openlmages V3 datasets. Various analysis also show
that our methodology actually works well, validating that
treating large loss properly matters in a weakly supervised
multi-label classification. Our code is available at ht L ps :

//github. com/snucml /LargeLossMatters.

1. Introduction

“Multi-label classification aims to find all existing objects
or attributes in a single image. It is gaining attention since
the real W('J_rld is made up of a scene with multiple objects in
it [28, 35]. Moreover, some of the single-label datasets, also
called multi-class datasets, actually have images containing
multiple objects [33, 56]. However, the multi-label classi-
fication task has some fundamental difficulties in making a
dataset because it requires annotators to label all categories’
existence/absence for every image. As the number of cate-
gories and images in the dataset increase, annotation cost
becomes tremendous [ | 9].
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Figure 1. Memorization in WSML. When training ResNel-50
model on PASCAL VOC datasel with partial label, we set all unob-
served labels as negative. These labels are composed of true nega-
tive and false negative. We observe that the model first fits into true
negative label (learning), and then fits into false negative (memo-
rization).

%\3 alleviate these issues, weakly supervised learning ap-
proach in multi-label classification task (WSML) has been
taken into consideration [2, 1 5,36, 50]. In a WSML setting,
labels are given as a form of partial label, which means only
a small amount of categories is annotated per image. This
setting reflects the recently released large-scale multi-label
datasets [ 12, 19] which provide only partial label. Thus, it is
becoming increasingly important to develop learning strate-
gies with partial labels.

There are two naive approaches to train the model with
partial labels. One is to train the model with observed labels
only, ignoring the unobserved labels. The other is to assume
all unobserved labels are negative and incorporate them into
training because majorities of labels are negative in a multi-
label setting [22]. As the second one has a limitation that
this assumption produces some noise in a label which ham-
pers the model learning, previous works [7,9,16,21] mostly
follow the first approach and try to explore the cue of un-
observed labels using various techniques such as bootstrap-
ping or regularization. However, these approaches include
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Abstract

Weakly supervised multi-label classification (WSML)
task, which is to learn a multi-label classification using par-
tially observed labels per image, is becoming increasingly
important due to its huge annotation cost. In this work, we
first regard unobserved labels as%egative labels, casting
the WSML task into noisy multi-label classification. From
this point of view, we empirically observe that memoriza-
tion effect, which was first discovered in a noisy multi-class
setting, also occurs in a multi-label setting. That is, the
model first learns the representation of clean labels, and
then starts memorizing noisy labels. Based on this finding,
we propose novel methods for WSML which reject or cor-
rect the large loss samples to prevent model from memo-
rizing the noisy label. Without heavy and complex compo-
nents, our proposed methods outperform previous state-of-
the-art WSML methods on several partial label settings in-
cluding Pascal VOC 2012, MS COCO, NUSWIDE, CUB,
and Openlmages V3 datasets. Various analysis also show
that our methodology actually works well, validating that
treating large loss properly matters in a weakly supervised
multi-label classification. Our code is available at ht tps :
//github.com/snucml/LargeLossMatters.
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“Multi-label classification aims to find all existing objects
or attributes in a single image. It is gaining attention since
the real world is made up of a scene with multiple objects in
it [28, ].“ﬂ/loreover, some of the single-label datasets, also
called multi-class datasets, actually have images containing
multiple objects [33, 56]. However, the multi-label classi-
fication task has some fundamental difficulties in making a
dataset because it requires annotators to label all categories’
existence/absence for every image. As the number of cate-
gories and images in the dataset increase,ﬂnnotation cost
becomes tremendous [ | Y].

% alleviate these issues, weakly supervised learning ap-
proach in multi-label classification task (WSML) has been
taken into consideration [, | &, 30, J.mln a WSML setting,
labels are given as a form of partial label, which means only
a small amount of categories is annotated per image. This
setting reflects the recently released large-scale multi-label
datasets [ 12, 19] which provide only partial label. Thus, it is
becoming increasingly important to develop learning strate-
gies with partial labels.
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“There are two naive approaches to train the model with
partial labels. One is to train the model with observed labels
only, ignoring the unobserved labels. The other is to assume
all unobserved labels are negative and incorporate them into
training because majorities of labels are negative in a multi-
label setting [32]. As the second one has a limitation that
this assumption produces some noise in a label which ham-
pers the model learning, previous works [7,9,16,21] mostly
follow the first approach and try to explore the cue of un-
observed labels using various techniques such as bootstrap-
ping or regularization. However, these approaches include
heavy computation or complex optimization pipeline.

We hypothesize that if label noise can be handled prop-
erly, the second approach could be a good starting point be-
cause it has the advantage of incorporating many true neg-
ative labels into model training. Therefore, we try to look
at the WSML problem from the perspective of noisy label
learning.
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Our-key observation is about me%emoﬁzation effect [ 1] W B : R A 3 M e 7% s 4 1) i 44k
in a noisy label learning literature. It is known that when BT

training a model with a noisy label, the model fits into clean
labels first and then starts memorizing noisy labels. Al-
though previous work showed the memorization effect only
in a noisy multi-class classification scenario, we found for
the first time that this same effect also happens in a noisy
multi-label classification scenario. As shown in Figure 1,
during training, the loss value from the clean label (true neg-
ative) decreases from the beginning while the loss from the
noisy label (false negative) decreases from the middle.
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Based on this finding, we borrow the idea from noisy
multi-class literature [13, 17, 23] which selectively trains
the model with samples having small loss and adapt this
idea into a multi-label scenario. Specifically, by assigning
the unknown labels as negative in a WSML setting, label
noise appears in the form of false negative. Then we de-
velop the three different schemes to prevent false negative
labels from being memorized into the multi-label classifi-
cation model by rejecting or correcting large loss samples
during training.
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Our method is light and simple, yet effective. It involves BE TR
negligible computation overhead and does not require com-
plex optimization for model training. Nonetheless, our
method surpasses the weakly supervised multi-label classi- WA R E. M EAR, BASHE
fication performance compared to the state-of-the-art meth- ERMES . WATFEZ R,
ods in Pascal VOC 2012 [10], MS COCO [24], NUSWIDE
[6], CUB [42], and Openlmages V3 [19] datasets. More-

over, while some existing methods are only effective in spe- }::\'ﬁéj;ﬁﬂlﬂ.? ) ?ﬁﬂ‘]lﬁ@?‘:—fij&ﬁ?é\\ﬂﬁﬁ%?g e
cific partial label setting [7, 9, 16], our method is broadly o RALSF AR TR BOR

applicable in both artificially created and real partial label
datasets. Finally, we provide some analysis about the rea-

son why our methods work well from various perspectives. FATHI TR DABEE T

To sum up, our contributions are as follows; © HIREIRZIRE 5 I I AZa0v

1) We empirically show for the first time that the memo- © K HE B AR AT ST A M S bR A
rization effect occurs during noisy multi-label classification. L5 N

2) We propose a novel scheme for weakly supervised © SOl H AL, EEl T SOTA.

multi-label classification that explicitly utilizes a learning
technique with noisy label.

3) Although light and simple, our proposed method
achieves state-of-the-art classification performance on vari-
ous partial label datasets.
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Method End-to-end Linearlnit.
VOC COCO NUSWIDE CUB | VOC COCO NUSWIDE CUB
Full label 90.2 78.0 54.5 329 | 91.1 77.2 54.9 34.0
Naive AN 85.1 64.1 42.0 19.1 | 86.9 68.7 47.6 20.9
WAN [7,27] | 86.5 64.8 46.3 20.3 | 87.1 68.0 47.5 21.1
LSAN [7,37] | 86.7 66.9 44 .9 17.9 | 86.5 69.2 50.5 16.6
EPR [7] 85.5 63.3 46.0 20.0 | 84.9 66.8 48.1 21.2
ROLE [7] 87.9 66.3 43.1 150 | 88.2 69.0 51.0 16.8
LL-R (Ours) | 89.2 71.0 47.4 195 | 894 719 49.1 21.5
LL-Ct (Ours) | 89.0  70.5 48.0 204 | 89.3 71.6 49.6 21.8
LL-Cp (Ours) | 88.4  70.7 48.3 20.1 | 88.3 71.0 49 4 214

15 5o B AR SR R B B 25 SR 58 — 47, YA R WSML i EFR. “End-to-end” FpRHEFHEABE
M—TFIRERHIT T4, W “LinearInit.” FoRETAERJLA epoch HigiiFss. LL-Ct ££ 8 Mt E Ry
7 FIEOL T IC TR 2L 7k, 1 LL-R A1 LL-Cp 7£ 8 Mt EH ) 6 FHFL FIE TR AL Tk
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Method Gl G2 G3 G4 G5 AllGs
S S F n
Naive IU | 69.5 703 748 792 855 759 MK R 1
BQXXA/“R Hﬁ*]‘fkl}ll % Curriculum [9] | 704 713 76.2 80.5 86.8 77.1 @,i? %‘%&%ﬁﬂﬁﬂ
IMCL[16] | 71.0 72.6 77.6 81.8 873 78.1 R, IXPHAS TR
: RIFEAN A F A PR %L
. Naive AN | 77.1 787 815 84.1 888 820 ~
BRI AR e WL (b
rd ey A = I l0) WAN [7,27] | 71.8 72.8 763 79.77 84.7 77.0 SEAT I SR It )
LSAN[7.37] [ 684 693 737 779 856 75.0 BB
LL-R (Ours) | 774 79.1 820 845 895 825
LL-Ct(Ours) | 77.7 793 82.1 847 894 82.6
LL-Cp (Ours) | 77.6 79.1 819 846 894 825
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Given : fire hydrant Given : banana Given : vase Given : truck
=) fire hydrant, car =) banana, orange =) vase, person =p truck, car
=) fire hydrant, car, person, bicycle =) banana, orange, bowl =) vase, person, chair =) truck, car, person

=) vase, person, chair, dining table

GT : fire hydrant, car, person, bicycle GT : banana, orange, bowl GT : vase, person, chair, dining table, GT : truck, boat, motorcycle
bottle, wine glass

© FMER T LL-Ct IEFE SORTER B EAEARE B =R R D0, LSS DU S By 2R 1% Dt -

© REBAS A NERMARS, BRI DUZRHRE AR R GT I Bk B

© BATIEMZBILL-CHE— A epoch AT I IE IE IARAE, 2 )5 By epoch )y 2 4k L2 1R %A
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© N TSI RRBLR R 5 G I B S A BB O, ARE R

W T B ERE 5 A KB R X

o VEZE R EEMST (Class Activation Mapping, Hj#FCAM)

ReFNEFFMERE, Mmiground truth®fRk (B EMG H B SE R4 )
P2 s PN = 38

* Pointing Game: J§ T # EBA ARG NRAARREN ST, 1E

FHH TR ERE. iR, YA CAMAM & AN
M4 R ST YRR AR B, B4 “Hit” i R ARAE
BEAER, WEAE “Miss” Jko

© NTEARN, EEG AR EE A “Hit” A1 “Miss” ¥

8, RS RMMCRY “Hit” & (BTHitR %R SHit+Miss
BMEILE) , &&EUE S IIERRE

Method vVOC COCO
Naive AN 78.9 46.4
WAN [7,27] 79.8 47.7
LSAN [7,37] 79.5 49.1
EPR [7] 80.2 48.1
ROLE [7] 82.5 51.5
LL-R (Ours) 83.7 54.0
LL-Ct (Ours) 83.7 54.1
LL-Cp (Ours) | 83.5 53.3

Table 4. Pointing Game.
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1) we empirically observe that memorization effect, which was first
discovered In a noisy multi-class setting, also occurs in a multi-label
setting.

B UER---, BB
« 2) To alleviate these issues, weakly supervised learning approach in

multi-label classification task (WSML) has been taken into
consideration.

 To alleviate these issues +#Zha] : A T EJLIX S w8, .. R B
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« 3) As the number of categories and images In the dataset increase,
annotation cost becomes tremendous.

* BERIIBREIH

* 4) There are two naive approaches to train the model with partial
labels. One is to train the model with observed labels only, ignoring
the unobserved labels. The other is to assume all unobserved labels are
negative and incorporate them into training because majorities of
labels are negative in a multilabel setting

o BFIES T IBIR M. ..
o Hp—Fhg. . BA—Fhi...
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« 5) Our method Is light and simple, yet effective. It involves negligible
computation overhead and does not require complex optimization for
model training.

* negligible computation: w] Z AT B2
* 6) we borrow the idea from noisy multi-class literature which
selectively trains the model with samples having small loss and adapt
this idea into a multi-label scenario.
* fEIBRAE BN yidealy J5 %
* Borrow the idea from
 Adapt this idea into
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 7) Our method is light and simple, yet effective. It involves negligible
computation overhead and does not require complex optimization for
model training.

* negligible computation: w] Z AT B2
 8) Concisely, we regard the class activation mapping (CAM) [58] as

the model’s explanation and the ground truth object as the human’s
explanation.

iR, TTLAEfspecifically.
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* 9) Our method is light and simple, yet effective. It involves negligible
computation overhead and does not require complex optimization for
model training.

- AWM B RER R, HICREBF
 10) Our methodology makes one step progress towards dealing with
noisy multi-label classification.

* TAHYITIBAE. . Wl LB T —28 -
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1) Multi-label classification aims to find all existing objects or
attributes In a single image. It is gaining attention since the real world
IS made up of a scene with multiple objects in it Moreover, some of the
single-label datasets, also called multi-class datasets, actually have
Images containing multiple objects.

¢ IRV LAY
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« 2) However, the multi-label classification task has some fundamental
difficulties in making a dataset because It requires annotators to label
all categories’ existence/absence for every image. As the number of
categories and images In the dataset increase, annotation cost becomes

tremendous.
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« 3) Our key observation iIs about the memorization effect in a noisy
label learning literature. It is known that when training a model with a
noisy label, the model fits into clean labels first and then starts
memorizing noisy labels. Although previous work showed the
memorization effect only in a noisy multi-class classification scenario,
we found for the first time that this same effect also happens in a noisy
multi-label classification scenario.
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* 4) There are two naive approaches to train the model with partial
labels. One Is to train the model with observed labels only, ignoring
the unobserved labels. The other iIs to assume all unobserved labels are
negative and incorporate them into training because majorities of
labels are negative in a multilabel setting .
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* 5) We hypothesize that if label noise can be handled properly, the
second approach could be a good starting point because It has the
advantage of incorporating many true negative labels into model
training. Therefore, we try to look at the WSML problem from the
perspective of noisy label learning.

s RERIFZT 32
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