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Abstract

In this paper, we consider enhancing medical visual-
language pre-training (VLP) with domain-specific knowl-
edge, by exploiting the paired i text reports from the
radiological daily practice. In particular, we make the fol-
lowing contributions: First, unlike existing works thar di-
rectly process the raw reports, we adopt a navel iriplet ex-
traction module to extract the medical-related information,
avoiding unnecessary complexity from language grammar
and enhancing the supervision signals; Second, we pro-
pose a novel triplet encoding module with entiry translation
by querying a knowledge base, to exploit the rich domain
knowledge in medical field, and implicitly build relation-
ships between medical entities in the language embedding
space; Third, we propose to use a Transformer-based fu-
sion model for spatially aligning the entity description with
visual signals at the image patch level, enabling the abil-
ity for medical diagnosis; Fourth, we conduct thorough
experiments to validate the effectiveness of our architec-
ture, and bench k on public bench ks e.g.,
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Figure 1: Our method mainly considers combining medical
knowledge with VLP. We propose Triplet Extraction and
Entity Translation modules, so that the network can be su-
pervised with detailed entity-level signals.

tally limiting its practical values. As an alternative, recent
research considers to train the model on the corpus, consist-
ing of large amount of multi-modal data, that is generated
from daily clinical routine, for instance, the most common
example is the dataset of X-ray images with paired radio-
logical reports [18, 28, 31].

This paper presents our preliminary investigation on

ChestX-rayl4, RSNA Pneumonia, SIIM-ACR P h
rax, COVIDx CXR-2, COVID Rural, and EdemaSeverity.
In both zero-shot and fine-tuning settings, our model has
demonstrated strong performance compared with the for-
mer methods on disease classification and grounding.

1. Introduction

With the rapid development of deep learning, numerous
works have been proposed to facilitate computer-aided di-
agnosis in the medical field [46, 20, 55, 19]. Despite the
tremendous progress, these models are normally trained to
recognize or segment the structures that fall into a certain
closed set of anatomical or disease categories, whenever a
new disease comes to be of interest, a costly procedure for
data annotation, model re-training are required, fundamen-
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vision-language representation learning in the medical do-
main, with the goal of better zero-shot disease diagnosis
(classification) and grounding. Undoubtedly, these tasks
have also been widely investigated in the computer vi-
sion community, with significant progress made on devel-
oping Foundational Models in the past years, for exam-
ple, CLIP [50], ALBEF [33], BLIP[32], etc. However, to
achieve such a goal in the medical domain, different chal-
lenges must be resolved, that requires research efforts from
the community: First, data availability, training Foundation
Models in computer vision normally require over millions
of image-text pairs, while in the medical domain, only a
few hundred thousand pairs are available [31]. The lim-
ited data challenges language models to understand the re-
ports in free form [6]. Secend, the problem considered in

puter-aided di is is Ily fine-grained, that re-
quires distinguishing the medical concepts to understand
the disease, as a consequence, domain knowledge is essen-
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In this paper, we consider enhancing medical visual-
language pre-training (VLP) with domain-specific knowl-
edge, by exploiting the paired image-text reports from the
radiological daily practice. In particular, we make the fol-
lowing contributions: First, unlike existing works that di-
rectly process the raw reports, we adopt a novel triplet ex-
traction module to extract the medical-related information,
avoiding unnecessary complexity from language grammar
and enhancing the supervision signals; Second, we pro-
pose a novel triplet encoding module with entity translation
by querying a knowledge base, to exploit the rich domain
knowledge in medical field, and implicitly build relation-
ships between medical entities in the language embedding
space; Third, we propose to use a Transformer-based fu-
sion model for spatially aligning the entity description with
visual signals at the image patch level, enabling the abil-
ity for medical diagnosis; Fourth, we conduct thorough
experiments to validate the effectiveness of our architec-
ture, and benchmark on numerous public benchmarks e.g.,
ChestX-rayl4, RSNA Pneumonia, SIIM-ACR Pneumotho-
rax, COVIDx CXR-2, COVID Rural, and EdemaSeverity.
In both zero-shot and fine-tuning settings, our model has
demonstrated strong performance compared with the for-
mer methods on disease classification and grounding.
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agnosis in the medical field [46, 20, 55, 19]. Despite the
tremendous progress, these models are normally trained to
recognize or segment the structures that fall into a certain
closed set of anatomical or disease categories, whenever a
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tally limiting its practical values. As an alternative, recent
research considers to train the model on the corpus, consist-
ing of large amount of multi-modal data, that is generated
from daily clinical routine, for instance, the most common
example is the dataset of X-ray images with paired radio-
logical reports [18, 28, 31].
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This paper presents our preliminary investigation on

vision-language representation learning in the medical do-
main, with the goal of better zero-shot disease diagnosis
(classification) and grounding. Undoubtedly, these tasks
have also been widely investigated in the computer vi-
sion community, with significant progress made on devel-
oping Foundational Models in the past years, for exam-
ple, CLIP [50], ALBEF [33], BLIP[32], etc. However, to
achieve such a goal in the medical domain, different chal-
lenges must be resolved, that requires research efforts from
the community: First, data availability, training Foundation
Models in computer vision normally require over millions
of image-text pairs, while in the medical domain, only a
few hundred thousand pairs are available [31]. The lim-
ited data challenges language models to understand the re-
ports in free form [6]. Second, the problem considered in
computer-aided diagnosis is naturally fine-grained, that re-
quires distinguishing the medical concepts to understand
the disease, as a consequence, domain knowledge is essen-

tial; Third, robustness is crucial, it is, therefore, preferable
to have explainability, where diagnosis results come along
with the visual grounding, to help radiologists understand
the system, and build trust between human and machines.
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Existing work in medical VLP (Vision-Language Pre-

training) [68, 47, 25, 6] follows a straightforward training A. Classical VLP Training

paradigm by matching raw reports with image scans, as Reports

shown in Fig.l1A, ignoring the medical prior knowledge, == E’[ General Text Encoding ]> R(:;):tr;:i:;ﬂ +N

and, thus, we propose a novel knowledge-enhanced visual- == _‘ g

language model as shown in Fig. 1B. First, we propose B. MedKLIP

a triplet extraction module to extract useful medical enti- Reports Knowledge-enhanced

ties (keywords) from raw reports, and simplify each report —1I==1l:= ’[ Triplet H Entity ]. Entity-level +N

into sets of triplets, denoted as {entity, position, exist}. «=]|==]]==] | Extraction | | Translation Query ke

Decomposing reports into triplets leads to an effective rep-

resentation of the reports with minimal information loss

due to the structural prior in reports; Second, we trans-

late the medical entities into fine-grained descriptions by O8] A MEZLE-ESHIN% (VLP) T4
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Thus, computing text embeddings for these descriptions
enables to implicitly establish relationships between med-
ical entities; Third, we view the entities as a query set and F, ALY T —Fosr AR -E SR, ME1B&.
adopt a transformer-based architecture for aligning the im-
age patches with entity descriptions, that enables explicit

supervision signals at entity level. Consequently, we can [HEHi—] RMNBH T N =Znd R, HFM
simultaneously infer the likelihood of certain diseases with R GRS PP EUA FH B 1B 2SR, #4%4@4\?&%1%443
the visual evidence in the form of a spatial heatmap, i.e., A—H=J0H, FToah BER, B, FEM . Bids
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Existing work in medical VLP (Vision-Language Pre-
training) [68, 47, 25, 6] follows a straightforward training
paradigm by matching raw reports with image scans, as
shown in Fig.l1A, ignoring the medical prior knowledge,
and, thus, we propose a novel knowledge-enhanced visual-
language model as shown in Fig. 1B. First, we propose
a triplet extraction module to extract useful medical enti-
ties (keywords) from raw reports, and simplify each report
into sets of triplets, denoted as {entity, position, exist}.
Decomposing reports into triplets leads to an effective rep-
resentation of the reports with minimal information loss
due to the structural prior in reports; Second, we trans-
late the medical entities into fine-grained descriptions by
leveraging a well-defined medical word knowledge base,
that tends to explain diseases with common vocabulary.
Thus, computing text embeddings for these descriptions
enables to implicitly establish relationships between med-
ical entities; Third, we view the entities as a query set and
adopt a transformer-based architecture for aligning the im-
age patches with entity descriptions, that enables explicit
supervision signals at entity level. Consequently, we can
simultaneously infer the likelihood of certain diseases with
the visual evidence in the form of a spatial heatmap, i.e.,
providing rough grounding for explainability.
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We pre-train the model on one widely-used medical
image-report dataset MIMIC-CXR [31], and rigorously
evaluate on the task of disease diagnosis across numerous
public benchmarks, e.g., ChestX-ray14 [58], RSNA Pneu-
monia [51], SIM-ACR Pneumothorax [1], COVIDx CXR-
2 [48], COVID Rural [54, 15], and EdemaSeverity [7]. We
get state-of-the-art performance on zero-shot classification
and grounding on different diseases, spanning different im-
age distributions, with further fine-tuning, our model still
exceeds previous models significantly.
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3. Method
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3.3.2 Knowledge-enhanced Triplet Encoding
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3.2 report pre-processing

B. Knowledge-enhanced Triplet Encoding
Triplet: {Entity, Position, Exist}

J Entity Position | Exist
Entity Translation

Knowledge Base: A

h
Preumonia is an condition of - PUSitiUn
Prevmothorm: s on abnormal = Prom t

Opacity i defined os an oreg ==

+ h 4 ¥

Text Encoder Tokenize

¥
Encoded Triplet: {e, p, |}

* W &g

*E Y

[EHL ] HRk, BATRIH—A % SCI# R B 22 WL AR, 5 PR 2SR Ak o 4
RLRE A, 12 VR P8 R R DL AV AR B o 8 3 XX B8 L SCARN
A ARG R B 22 AR Z ATV R R 5

Exist 4§%: FAMEH 1€10,1,-1}, 1€10,1,-1} REREPH “FEL” ,
Hp 1 FoRfife (True) , 0 #aAfEfE (False) , -1 FRamAHHE -
Entity 4885 : FRA1E S — L5 5 15 ) B B 22 AR R FL 440 R v 4
i, filan, Description([ “Pneumonia” |) = “gJ&—Fl =55 ma fifi 358 i 5
Jgg - oo RPN AN 32 BH A PR -7

R XM I 5, A SRR AR A 16548 0 T B R 5 By AR ACIS W 2250
HE, FAEE—PRLll B AR oA A R B S = B A ik, R
BRI HE UL 3 #EAT SR R B o

Position 4g#%: X1 “fr&” L, FAMEH—RRED: “BAT
BY RERAF. )5, RAVERBIGRR XA %545 ClinicalBERT >k
P IR A AR MBONRE, JRE RS ERGIPL (MLP) Kk
NS 21 Pl o) 248 -

57 Wik: RPARESARE, RAGHGEAERNVRA BB, il PR 05k w1 S S AT B AR\ P
FE P AL BE UL o XA AT DA PO HE T2 AL, RN 2 R P Rl B R 35, M A R ge st o7 B L3R

Z MR RR R, FHEMR WML



=

3.3 fusion module
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3.4 training
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3.5 inferfence
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Dataset RSNA Pneumonia SIIM-ACR Pneumothorax ChestX-ray14
Methods AUCYT F11 ACC?t AUCYT F11 ACC?t AUCYT F11 ACCYT
ConVIRT [68] 0.8042 0.5842 0.7611 0.6431 0.4329 0.5700 0.6101 0.1628 0.7102
GLoRIA [25] 0.7145 0.4901 0.7129 0.5342 0.3823 0.4047 0.6610 0.1732 0.7700
BioViL [6] 0.8280 0.5833 0.7669 0.7079 0.4855 0.6909 0.6912 0.1931 0.7916
CheXzero [56] 0.8579 0.6211 0.7942 0.6879 0.4704 0.5466 0.7296 0.2141 0.8278
Ours | 0.8694 0.6342 0.8002 | 0.8924 0.6833 0.8428 | 0.7676 0.2525 0.8619

ELLER : A1 OB RSNANG 4 SR8 FYAUCHR 3 0. 834271 0.87, 4 SIIMACRA ISR HAUCHE 4
0.7 13FF+0.89, MIFKLFTR. XA I7 H:AE 5 17 M Ab B 2ot I 22 v 0o 0 35055 O 43 A o

Prompt Type Direct Covid-19 Covid-19 Description Table 2: Comparison with other state-of-the-
Methods AUC?T Fl1 ACCH AUCH FI4 ACC?T art methods on zero-shot Covid-19 classifica-
ConVIRT [68] | 0.6159  0.7057  0.6113 | 05208 0.6902 05266  tion task. AUC, F1 and ACC scores are re-
GLORIA [25] | 0.6319  0.6938 05710 | 0.6659  0.7007  0.6083  ported. “Direct covid-19” refers to directly use

BioViL [6] 0.6137  0.6958 05461 | 0.5382  0.6910 05375 <« 1 107
CheXzero[s6] | 06462 07369 06629 | 0.6667 0.6400 06578  CoVid-197 to construct the prompt sentence
while “Covid-19 Description” refers to replace

Ours | 0.6561 07066 05917 | 0.7396  0.7670  0.7006

the name “Covid-19” with its description.

RIWPp: COVID-192—Ffipii, |k T20194E, 20154 4R BMIMIC-CXRfR i % A K COVID-19
WAEAT R SR, I BER ARG RS2 H IR WHRHIRES) o GNER2FTR, DU EP 24 PR RBLA J5 i AR 1E
W2 Wi iep il 20 RE . i RATIIR 5%, FESIANBEZARE, BIGER SRR, w LB 8 ok Wl =R R

?ﬁ%ﬁfﬁ%, iﬁ%i‘%‘%‘lﬁﬁ%: AUCH0.6647120.74, ACCIO0.5998F+%0.70, UEH] 7 IARFIREN TR Wy
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ERER - BZBERIET (ZEI1xgrounding)

BR Y TS WAk, AT RREEAE BT D P R AR R O 2, BT DA LA A S R GRS EAI AT o R L, AT el AR T
H AL S B R SR AT AR, S S IAA T IRHEAT U

Methods | Pointing Game?T  Recallf Precisiont  loUT Dicet Methods | Pointing GametT  Recallt  Precisiont
GLoRIA [25] 0.7607 0.8330 0.1621 0.2182 0.3468 GLoRIA [25] 0.0651 0.2377 0.0585
BioViL [6] 0.8342 0.8521 0.5034 0.3029 0.4386 BioViL [6] 0.0252 0.1963 0.1429
Ours | 0.8721 0.8661 0.6420 0.3172  0.4649 Ours | 0.1975 0.3562 0.1940
(a) Zero-shot grounding on Pneumonia (b) Zero-shot grounding on Pneumothorax

BB . BATRHR AU MO.834EF+320.87, Kl H MIZ M O0.8542F+320.87, k5 M 0.504EF-£0.64,

IOUMO.30427}%50.32, DiceZ#HIMN0.443F}F0.46, MAESIIM-ACREIEAE (F£3b) I, Sl X it Bk
%, EALEALE Y LA EI M AL E BBk (6], HEBLIRATR Z I RS0 A ERREARE E. R0, FRATH
AR IX e b LRI EMR T2 k. (WHaHR)

Prompt Type Direct covid-19 Covid-19 Description
Methods Pointing Gamef Recallt Precision? IoUft  Dicef | Pointing GamefT  ART APt IoUt  Dicet
GLoRIA [25] 0.0364 0.2906 0.1073  0.0645 0.1141 0.2727 0.2821 0.1336 0.0596 0.1075
BioViL [6] 0.4000 0.2564 0.2703  0.1198 0.1967 0.1818 0.2393 0.1637 0.0861 0.1427
Ours ‘ 0.1818 0.1880 0.1497  0.0747 0.1289 | 0.5818 0.5214 04959 0.1373 0.2278

RILBIR . FATEX R I BIH——EICOVID-193k47 T F-shot It @ MLl MFRAFIR. TATHIBELE A b L
KRB —BUnTt, i, feaikfss M0.403271£0.58.



ELIREE R -XKIBBETT (93K )

Dataset Pneumonia Pneumothorax Covid-19 ChestX-rayl4
Data Portion 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%
Scratch 0.7107 0.8150 0.8626 | 04347 0.6120 0.6571 | 0.7861 09162 09554 | 0.6005 0.7365 0.7924

ConVIRT [68] | 0.8398 0.8562 0.8761 | 0.7134 0.7826 0.9004 | 0.8675 09541 09726 | 0.6615 0.7658 0.8128
GLoRIA [25] | 0.8599 0.8666 0.8846 | 0.7439 0.8538 0.9014 | 0.9065 09381 09728 | 0.6710 0.7642 0.8184
BioViL [6] 0.8233  0.8538 0.8836 | 0.6948 0.7775 0.8689 | 0.8989 09529 09729 | 0.6952 0.7527 0.8245

Ours | 0.8731 0.8799 0.8931 | 0.8527 0.9071 0.9188 | 0.9224 0.9657 0.9729 | 0.7721 0.7894 0.8323

Table 5: Comparison of AUC scores with other state-of-the-art methods on fine-tuning classification task. The macro average
of AUC scores on 14 diseases are reported for ChestX-ray14 dataset.

FATTE LA A W W B R AR BT 7385y, 1% 10%FM100% MR ##1TE, X 5IAHTIE68, 25, 6]—HK.
WNERSPR, BATMIBIEE A B4 EIRoR TR MAUCTR 4271, Rt JeMT Al 45 3 il B Bl B HAG B
Sl ¢



LI LER FKIBAETT (%)

Diseases Pneumonia Pneumothorax Covid-19
Data Portion 1% 10% 100% 1% 10% 100% 1% 10% 100%
Scratch 0.4347 0.6047 0.7068 0.2133 0.3323 0.7447 0.1481 0.2367 0.3228
ConVIRT [68] 0.5706 0.6491 0.7201 0.5406 0.6121 0.7352 0.1995 0.2724 0.3737
GLoRIA [25] 0.6555 0.6907 0.7328 0.5673 0.5778 0.7694 0.1889 0.2809 0.3869
BioViL [6] 0.6824 0.7038 0.7249 0.6267 0.6998 0.7849 0.2113 0.3239 0.4162
Ours | 0.7064 0.7162 0.7579 | 0.6659 0.7210 0.7937 | 0.2445 0.3539 0.4399

Table 6: Comparison of Dice scores with other state-of-the-art methods on fine-tuning segmentation tasks. Three diseases

are reported, and for each disease, three data portions, 1%, 10%, 100% are adopted to show the performance change under
different data amounts.

AT =R RIBER AT T 0 B BIORER . BATERZF T 1% 10%M1100% B IESIT IR . A TFIX =M EA R
BG AR Pm , BATBIT AL e hs L@ 7B Wi Se it U5 1%, U R REIE R RO T



LR LE R BB RETT (R, BHE)

0 1 2 3 AVG
AUCT FI+ ACCt|AUCt FI+ ACCtH| AUCT FIt ACCt | AUCT FIt  ACCt | AUCtH Fl+  ACCH

Scratch 0.7631 0.7036 0.6738 | 0.5383 0.3593 0.3223 | 0.6692 04328 0.7012 | 0.8420 0.5694 0.8770 | 0.7031 0.5163 0.6436
ConVIRT [68] | 0.8453 0.7769 0.7793 | 0.6099 0.3938 0.4629 | 0.7202 0.4843 0.6445 | 0.9047 0.6154 0.8809 | 0.7700 0.5676 0.6919
GLoRIA [25] | 0.8304 0.7577 0.7520 | 0.6208 0.3991 0.4922 | 0.7339 0.4958 0.7037 | 0.9246 0.6667 09102 | 0.7774 0.5798 0.7145

BioVIiL [6] | 0.8034 0.7378 0.7148 | 0.6035 0.3912 0.4570 | 0.6860 0.4497 0.6777 | 0.9229 0.6500 0.9160 | 0.7540 0.5572 0.6914

Ours | 0.8502 0.7646 0.7539 | 0.6641 0.4140 0.5392 | 0.7605 0.5266 0.7031 | 0.8845 0.6250 0.9160 | 0.7898 0.5826 0.7280

Methods

Table 7: Comparison with other state-of-the-art methods on fine-tuning edema severity grading multi-class classification task.
AUC score 1s reported in the Table. “0,1,2,3” in the table represents the severity level and final average scores are reported.
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ASCHR A — M E 22 AR B SR AL - B S )I% (VLP) B, .0 TAEERE =34
1) A = oA IR PUREHE I8 I A O Zon e A B I BHE 5, WAL IR IS B2k
2) ¥ ZIonH AR R A BB 22 R TR SR G Ak N, B T PR AR L 5 2 5 2R A
3) Wit HET Transformer WZERSEBE 558 X IH06 55

SR, ZARAES R BIRERMBCE TR R, HERTRASRE MRS (AT RO AR IR
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* 1) With the rapid development of deep learning, numerous works have
been proposed to facilitate computer-aided diagnosis in the medical
field [46, 20, 55, 19].

* With the rapid development of ... numerous works have been

proposed to ...
o MEE---RORGE LR, KEM TAEBRE -

* 2) Despite the tremendous progress, these models are normally trained
to recognize or segment the structures that fall into a certain closed set
of anatomical or disease categories

s R APARNEYRIE, tremendous (B KAY)
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* 3) As an alternative, recent research considers to train the model on the
corpus, consisting of large amount of multi-modal data, that 1s
generated from daily clinical routine

- BHrERE
« As an alternative: R — 1B RH%EE

* 4) This paper presents our preliminary investigation on vision-
language representation learning in the medical domain, with the goal
of better zero-shot disease diagnosis (classification) and grounding.
Undoubtedly, these tasks have also been widely investigated 1n the
computer vision community

o« AR R H ARG IR B 1R A
« AL T EZZMIxx I, BRRFERE, XAMBAEH REGhEg) gy, ...
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* 5) Consequently, we can simultaneously infer the likelihood of certain
diseases with the visual evidence in the form of a spatial heatmap, i.e.,
providing rough grounding for explainability.

* Consequently: [
* Simultaneously:. [&]#f

* 6) We pre-train the model on one widely-used medical image-report
dataset MIMIC-CXR [31], and rigorously evaluate on the task of
disease diagnosis across numerous public benchmarks

* rigorously evaluate

© JUREEAG, RIBRARE
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* 7) One observation to be noticed 1s that, results in Tab. 4 are mostly
consistent with those in Tab. 2
* SRIHILI R IR

* One observation to be noticed 1s that

* 8) First, we propose a triplet extraction module to extract useful medical-
related triplets as more useful supervision signals, simplifying complex raw
reports with minimal information loss. Second, we translate the entities in
extracted triplets into detailed medical descriptions and embed them with a
text encoder enabling the network to understand complex medical expert-
level knowledge. Finally, a transformer-based structure 1s proposed to do
local region alignment.

© RIRMRH, HBEhIESHILE ST RN
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* 9) Despite the tremendous progress, these models are normally trained
to recognize or segment the structures that fall into a certain closed set
of anatomical or disease categories

* Flfall into IEBUA S5 HIFE N B xxx [ 5E

* 10) a costly procedure for data annotation, model re-training are
required, fundamentally limiting its practical values.

o AR BRI T xxx AE

 fundamentally
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* 1) First, data availability, training Foundation Models in computer
vision normally require over millions of image-text pairs, while 1n the
medical domain, only a few hundred thousand pairs are available . The
limited data challenges language models to understand the reports in
free form .

e INFH Eié’fﬁ

* B o R R R R

5K &
R

(R - SCAS BT EHE ,  MAE R
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* 2) Second, the problem considered in computer-aided diagnosis 1s
naturally fine-grained, that requires distinguishing the medical
concepts to understand the disease, as a consequence, domain

knowledge 1s essential;

s MAESFSHER

ﬁ&‘ﬂlé@@;@ﬁ:: E-é'fn'i/\
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* 3) Third, robustness is crucial, it 1s, therefore, preferable to have
explainability, where diagnosis results come along with the visual
grounding, to help radiologists understand the system, and build trust
between human and machines.

c MAESSHEIMMBYER=E, ITRBPE (BHMKE)

B, GEMEXREE. HiL, H&olfRRk s oy BE—RI AR
i Pl BT AR , 32X B TBCH BB AL B R Suis AR AL, DA TS 57
NEHLEs Z [ B
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* 4) Existing work in medical VLP (Vision-Language Pretraining) follows a straightforward
training paradigm b%/ matching raw reports with image scans, as shown in Fig.1A,
ignoring the medical prior knowledge.

* First, unlike existing works that directly process the raw reports, we adopt a novel triplet
extraction module to extract the medical-related information, avoiding unnecessary
complexity from language grammar and enhancing the supervision signals;

* In contrast to natural texts, information in medical reports tends to be more condensed,
with radiologists pointing out the existence of abnormality and their positions in the
image. Meanwhile, medical terminologies tend to be professional.

* T4 ZHEZCHTIRE PRI ! M AREAEIFTENTIRS,
» HETHA BRSO (VLP) BRFER A ELHE VLR ah ik -5 BG4 5 7 Bl 2RV
A (WENARTR) , 20 7 BESAERAN.
© B, PNRETHAEREBEFEGR S, TATR A = oA iR USSR I B 24
KB, BEMLE TIESEEAORIKIURE M, R T HEE S
« MBT-HAXAR, B s BN BRG—HUNBHEI G W A S e B G Y
PiE, HEZRERARELS L.
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* 5) Despite its simplicity, converting the entities into descriptions 1s
crucial for more reliable and zero-shot diagnosis, as 1t further
decomposes the professional medical entities into basic attributes that
are shared by different diseases, encouraging the model to capture a
deep understanding of the visual evidence.

e T 4 IR IEIRAFER
°E%ﬁ%%iL%i%%%%%ﬁﬁiﬂ%ﬂ%%?ﬁﬁ%%ﬁ%ﬁ%o
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. MedKLIPFE B2~ B[R 2 Wi i R 2 H AR R A7 BEESMEZEUR S W I LA M AR
MedKLIPHaria i $958 B2 22 a5 S T 48 (VLP) SR$ m X0t EUR M2 Wrikag?
fEMedKLIPJ5 ik, Tripleti 2 BUBIEMAE R AT A7 "BRarHs Bh S Ak ot 2 42 i A 37
TARBIRBIAEM edKLIPH (4 F AT A7 B R Q] 4 iR A2 200 X0 [ 2 45 3 Py B A 1 7
MedKLIPH) Transformer il & R U a] 76 45 () _E X BE 22 AR R R4S 5 47X 557
MedKLIPff F 7 Wt B A IR R TR R DAL T X Se R A me MR A T 47
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10. 54 BE2AVLP M L, MedKLIPAEMRLL 5 i R B 1 io. 35 i cdk?

11.MedKLIPH i Triplet4gidid #2 5 Qi far 88 s A X B2 2= G Al B BEAR 1) 2

124 22 “HRHgsE A Triplet4ifis” BIHR? B RMarA) I B 224018 B SR S 2 i 3R 307
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